Abstract
An immunosensor has been developed for the detection of autoantibodies directed against wheat gliadin, a protein fraction of cereal gluten which is involved in celiac disease. The immunosensor is based on the immobilization of gliadins onto gold electrodes covered with a polyelectrolyte layer of poly(4-styrenesulfonic acid sodium salt). The immobilization was monitored by quartz crystal microbalance (QCM) analysis. The antigen–antibody interaction signal was amplified by an incubation step with peroxidase-labeled immunoglobulins and subsequent peroxidase-catalyzed oxidation of 3-amino-9-ethylcarbazole (AEC). Changes in the insulating properties of the electrode layer were measured by electrochemical impedance spectroscopy (EIS) in the presence of ferri/ferro-cyanide. Impedance spectra could be fitted to a Randles equivalent circuit with high accuracy. Exposing the sensor electrodes to various antigliadin antibody concentrations resulted in proportional changes in the charge transfer resistance. A calibration graph for the detection of antigliadin antibodies was established for antibody concentrations between 10−8 and 10−6 M. Finally, the sensor was used for the determination of antigliadin autoantibodies of the IgG and IgA type in several human sera.