Electronic properties of CuGaSe2-based heterojunction solar cells. Part I. Transport analysis

Abstract
This article presents a systematic study on the electronic transport mechanisms of CuGaSe2 -based thin film solar cells. A variety of samples with different types of stoichiometry deviations, substrates and buffer layers is investigated. We propose two transport models, namely tunneling enhanced volume recombination and tunneling enhanced interface recombination, which allow to explain the observed features for all devices under consideration. The doping level of the absorber layer turns out to be the most decisive parameter for the electronic loss mechanism. The doping is influenced by the type of stoichiometry deviation as well as by the Na content of the substrate. High doping levels result in tunnel assisted recombination. The best solar cells display the lowest tunneling rates. For these devices treatments of the absorber surface by air-annealing and/or the deposition temperature of the CdS buffer layer are decisive for the final device performance. We use the investigation of the open-circuit voltage relaxation to verify the assumptions on the dominant loss mechanism in the different devices.