Static Relationship of Cycle Length to Reentrant Circuit Geometry

Abstract
Background Knowledge of the pathway common to both wave fronts in figure-8 reentrant circuits (ie, the isthmus) is of importance for catheter ablation to stop reentrant ventricular tachycardia. It was hypothesized that quantitative measures of reentry isthmus geometry were interrelated and could be correlated with tachycardia cycle length. Methods and Results A canine infarct model of reentrant ventricular tachycardia in the epicardial border zone with a figure-8 pattern of conduction was used for initial analysis (experiments in 20 canine hearts with monomorphic reentry). Sinus-rhythm and reentry activation maps were constructed, and quantitative (skeletonized) geometric parameters of the isthmus and border zone were measured from the maps. Regression equations were used to determine significant correlation relationships between skeletonized variables, which can be described as follows. Tachycardia cycle length, measured from the ECG R-R interval, increases with increasing isthmus length, width, narrowest width, angle with respect to muscle fibers, and circuit path length determined by use of sinus-rhythm measurements. After this procedure, in 5 test-set experiments, tachycardia cycle length measured from the R-R interval, in combination with regression coefficients calculated from initial experiments, correctly predicted isthmus geometry (mean estimated/actual isthmus overlap 70.5%). Also, the circuit path length determined with sinus-rhythm measurements correctly estimated the tachycardia cycle length (mean error 6.2±2.5 ms). Conclusions Correlation relationships derived from measurements using reentry and sinus-rhythm activation maps are useful to assess isthmus geometry on the basis of tachycardia cycle length. Such estimates may improve catheter ablation site targeting during clinical electrophysiological study.