Influence of Blood Glucose Concentration on Brain Lactate Accumulation during Severe Hypoxia and Subsequent Recovery of Brain Energy Metabolism

Abstract
The effects of hypoxaemia on regional cerebral blood flow (CBF) and brain cortical metabolite concentrations were investigated at different blood glucose concentrations in rats under nitrous oxide anaesthesia. Tissue hypoxia of 15-min duration was induced by a combination of arterial hypoxaemia, hypotension, and clamping of the right carotid artery. Blood glucose concentrations were manipulated by varying the food intake in the 24 h before the experiment, and by glucose administration. Cortical CBF doubled during hypoxia on the intact side, but did not differ significantly from control values on the clamped side. In the clamped hemisphere there was a substantial decrease in adenylate energy charge. At brain tissue glucose concentrations of 1 μmol g−1 and above, there was an inverse correlation between adenylate energy charge and brain lactate concentration. In starved animals with mean brain glucose of 0.32 ± 0.00 μmol g−1, lactate concentration was significantly lower, in spite of equally severe disruption of energy state. Recovery of brain adenylate energy charge was worse in fed and glucose-infused groups than in the fasted group. These results demonstrate that limitation of substrate supply during severe hypoxia in the rat allows enhanced recovery of brain energy metabolism following the hypoxic episode.