Effect of metal ions on the formation and function of osteoclastic cellsin vitro

Abstract
To determine if metal ions play a contributing role in loosening of orthopedic implants, the present work investigated whether sublethal concentrations of ions affect the formation and function of osteoclasts in vitro. Rat bone marrow cells were cultured on slices of devitalized bone and in the presence of ions associated with Co-Cr-Mo and Ti-6Al-4V alloys for up to four weeks. Cultures were assayed for total intracellular protein, used as measure of cell growth, and resorption activity of osteoclastic cells derived from hematopoietic stem cells was quantified using image analysis. Although Co2+ caused delayed toxicity not previously observed during short-term experiments, none of the other ions affected cell proliferation, indicating that the chosen concentrations were sublethal. In general, exposure of bone marrow cultures to ions caused either a decrease or no change in the total area of bone resorption. A decrease in the number of resorption pits formed by osteoclastic cells was primarily responsible for the decrease in total amount of resorption. Therefore, even though cells continued to grow over the entire culture period, less osteoclastic activity was observed. Findings indicate that if metal ions play a role in periprosthetic pathology, they may contribute to implant failure by impairing bone repair while allowing fibrous tissue formation following debris-induced osteolysis. © 1997 John Wiley & Sons, Inc.

This publication has 17 references indexed in Scilit: