Syndecan-2 is essential for angiogenic sprouting during zebrafish development

Abstract
We used a morpholino-based gene-targeting screen to identify a novel protein essential for vascular development using the zebrafish, Danio rerio. We show that syndecan-2, a cell-surface heparan sulfate proteoglycan, is essential for angiogenic sprouting during embryogenesis. The vascular function of syndecan-2 is likely conserved, as zebrafish and mouse syndecan-2 show similar expression patterns around major trunk vessels, and human syndecan-2 can restore angiogenic sprouting in syndecan-2 morphants. In contrast, forced expression of a truncated form of syndecan-2 results in embryos with defects in angiogenesis, indicating that the highly conserved cytoplasmic tail is important for the vascular function of syndecan-2. We further show that vascular endothelial growth factor (VEGF) and syndecan-2 genetically interact in vivo using both gain-of-function and loss-of-function studies in zebrafish. VEGF-mediated ectopic signaling is compromised in syndecan-2 morphants, and ectopic syndecan-2 potentiates ectopic VEGF signaling. Syndecan-2 as a novel angiogenic factor is a potential candidate for use in the development of angiogenesis-based therapies.