Abstract
This paper presents techniques for identifying placement sites for phasor measurement units (PMUs) in a power system based on incomplete observability. The novel concept of depth of unobservability is introduced and its impact on the number of PMU placements is explained. Initially, we make use of spanning trees of the power system graph and a tree search technique to find the optimal location of PMUs. We then extend the modeling to recognize limitations in the availability of communication facilities around the network and pose the constrained placement problem within the framework of Simulated Annealing (SA). The SA formulation was further extended to solve the pragmatic phased installation of PMUs. The performance of these methods is tested on two electric utility systems and IEEE test systems. Results show that these techniques provide utilities with systematic approaches for incrementally placing PMUs thereby cushioning their cost impact.

This publication has 5 references indexed in Scilit: