BiCuSeO oxyselenides: new promising thermoelectric materials

Abstract
BiCuSeO oxyselenides have recently acquired ever-increasing attention and have been extensively studied as very promising thermoelectric materials. The ZT of the BiCuSeO system was significantly increased from 0.5 to 1.4 in the past three years, which indicates that BiCuSeO oxyselenides are robust candidates for energy conversion applications. In this review, we first discuss and summarize the crystal structures, microstructures, electronic structures and physical/chemical properties of BiCuSeO oxyselenides. Then, the approaches that successfully enhanced the thermoelectric performances in the BiCuSeO system are outlined, which include increasing carrier concentration, optimizing Cu vacancies, a simple and facile ball milling method, multifunctional Pb doping, band gap tuning, and increasing carrier mobility through texturing. Theoretical calculations to predict a maximum ZT in the BiCuSeO system are also described. Finally, a discussion of future possible strategies is proposed to aim at further enhancing the thermoelectric figure of merit of these materials.