High-throughput behavioral analysis in C. elegans

Abstract
The Multi-Worm Tracker permits real-time, high-throughput, quantitative analysis of behavior in Caenorhabditis elegans. It should enable screens for genes implicated in complex worm behaviors. Also in this issue, Albrecht and Bargmann apply microfluidics to study worm chemosensory behavior with high spatial and temporal precision. We designed a real-time computer vision system, the Multi-Worm Tracker (MWT), which can simultaneously quantify the behavior of dozens of Caenorhabditis elegans on a Petri plate at video rates. We examined three traditional behavioral paradigms using this system: spontaneous movement on food, where the behavior changes over tens of minutes; chemotaxis, where turning events must be detected accurately to determine strategy; and habituation of response to tap, where the response is stochastic and changes over time. In each case, manual analysis or automated single-worm tracking would be tedious and time-consuming, but the MWT system allowed rapid quantification of behavior with minimal human effort. Thus, this system will enable large-scale forward and reverse genetic screens for complex behaviors.