Regeneration of axons in the optic nerve of the adult Browman-Wyse (BW) mutant rat

Abstract
We have studied the regeneration of axons in the optic nerves of the BW rat in which both oligodendrocytes and CNS myelin are absent from a variable length of the proximal (retinal) end of the nerve. In the optic nerves of some of these animals, Schwann cells are present. Axons failed to regenerate in the exclusively astrocytic environment of the unmyelinated segment of BW optic nerves but readily regrew in the presence of Schwann cells even across the junctional zone and into the myelin debris filled distal segment. In the latter animals, the essential condition for regeneration was that the lesion was sited in a region of the nerve in which Schwann cells were resident. Regenerating fibres appeared to be sequestered within Schwann cell tubes although fibres traversed the neuropil intervening between the ends of discontinuous bundles of Schwann cell tubes, in both the proximal unmyelinated and myelin debris laden distal segments of the BW optic nerve. Regenerating axons never grew beyond the distal point of termination of the tubes. These observations demonstrate that central myelin is not an absolute requirement for regenerative failure, and that important contributing factors might include inhibition of astrocytes and/or absence of trophic factors. Regeneration presumably occurs in the BW optic nerve because trophic molecules are provided by resident Schwann cells, even in the presence of central myelin, oligodendrocytes and astrocytes. All the above experimental BW animals also have Schwann cells in their retinae which myelinate retinal ganglion cell axons in the fibre layer. Control animals comprised normal Long Evans Hooded rats, BW rats in which both retina and optic nerve were normal, and BW rats with Schwann cells in the retina but with normal, i.e. CNS myelinated, optic nerves. Regeneration was not observed in any of the control groups, demonstrating that, although the presence of Schwann cells in the retina may enhance the survival of retinal ganglion cells after crush, concomitant regrowth of axons cut in the optic nerve does not take place.