Oxytocin in the Medial Amygdala is Essential for Social Recognition in the Mouse

Abstract
Oxytocin (OT) knock-out mice fail to recognize familiar conspecifics after repeated social exposures, despite normal olfactory and spatial learning abilities. OT treatment fully restores social recognition. Here we demonstrate that OT acts in the medial amygdala during the initial exposure to facilitate social recognition. OT given before, but not after, the initial encounter restores social recognition in OT knock-out mice. Using c-Fos immunoreactivity (Fos-IR) as a marker of neuronal activation in this initial encounter, we found similar neuronal activation in the wild-type (WT) and OT knock-out mouse in olfactory bulbs, piriform cortex, cortical amygdala, and the lateral septum. Wild-type, but not OT knock-out mice exhibited an induction of Fos-IR in the medial amygdala. Projections sites of the medial amygdala also failed to show a Fos-IR induction in the OT knock-out mice. OT knock-out, but not WT, mice showed dramatic increases in Fos-IR in the somatosensory cortex and the hippocampus, suggesting alternative processing of social cues in these animals. With site-specific injections of OT and an OT antagonist, we demonstrate that OT receptor activation in the medial amygdala is both necessary and sufficient for social recognition in the mouse.