UVCS/[ITAL]SOHO[/ITAL] Empirical Determinations of Anisotropic Velocity Distributions in the Solar Corona

Abstract
We present a self-consistent empirical model for several plasma parameters of a polar coronal hole near solar minimum, derived from observations with the Solar and Heliospheric Observatory Ultraviolet Coronagraph Spectrometer. The model describes the radial distribution of density for electrons, H0, and O5 + and the outflow velocity and unresolved most probable velocities for H0 and O5 + during the period between 1996 November and 1997 April. In this Letter, we compare observations of H I Lyα and O VI λλ1032, 1037 emission lines with spatial models of the plasma parameters, and we iterate for optimal consistency between measured and synthesized observable quantities. The unexpectedly large line widths of H0 atoms and O5 + ions at most radii are the result of anisotropic velocity distributions, which are not consistent with purely thermal motions or the expected motions from a combination of thermal and transverse wave velocities. Above 2 R, the observed transverse, most probable speeds for O5 + are significantly larger than the corresponding motions for H0, and the outflow velocities of O5 + are also significantly larger than the corresponding velocities of H0. We discuss the constraints and implications on various theoretical models of coronal heating and acceleration.