Recombinant BCG ΔureC hly+ Induces Superior Protection Over Parental BCG by Stimulating a Balanced Combination of Type 1 and Type 17 Cytokine Responses

Abstract
Background. New vaccines against tuberculosis (TB) are urgently needed because the only available vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), fails to protect against pulmonary TB in adults. The recombinant ΔureC hly+ BCG (rBCG) is more efficient than parental BCG (pBCG) against pulmonary TB in preclinical studies and has proven safe and immunogenic in phase I clinical trials. Methods. In an attempt to identify the mechanisms underlying the superior protection of rBCG, we compared the immune responses elicited after vaccination and subsequent aerosol infection with Mycobacterium tuberculosis (MTB) in mice. Results. We demonstrate that both rBCG and pBCG induce marked type 1 cytokine responses, whereas only rBCG elicits a profound type 17 cytokine response in addition. We observed earlier recruitment of antigen-specific T lymphocytes to the lung upon MTB infection of rBCG-vaccinated mice. These T cells produced abundant type 1 cytokines after restimulation, resulting in 10-fold reduced bacterial burden 90 days after infection. Conclusions. Our findings identify a general immunologic pathway for improved vaccination strategies against TB that can also be harnessed by other vaccine candidates.

This publication has 44 references indexed in Scilit: