Evolution of stress in individual grains and twins in a magnesium alloy aggregate

Abstract
This is an in situ measurement of the full stress tensor and its evolution in a growing deformation twin and, simultaneously, in the grain where the twin forms. The combined information provides a detailed picture of the grain-twin interaction. The three-dimensional x-ray diffraction method using 80.7 keV synchrotron x rays allows us to in situ investigate a grain within the bulk of a magnesium alloy (AZ31) sample that is compressed to activate the {101¯2}1¯011 tensile twin system. We observe that the stress state of the twin is drastically different from the one of the grain in which it is embedded. We analyze such result in terms of the shear transformation associated with twinning and the dimensional constraints imposed by the surrounding aggregate.