Abstract
Presents a new method to segment brain parenchyma and cerebrospinal fluid spaces automatically in routine axial spin echo multispectral MR images. The algorithm simultaneously incorporates information about anatomical boundaries (shape) and tissue signature (grey scale) using a priori knowledge. The head and brain are divided into four regions and seven different tissue types. Each tissue type c is modeled by a multivariate Gaussian distribution N(mu(c),Sigma(c)). Each region is associated with a finite mixture density corresponding to its constituent tissue types. Initial estimates of tissue parameters {mu(c),Sigma(c )}(c=1,...,7) are obtained from k-means clustering of a single slice used for training. The first algorithmic step uses the EM-algorithm for adjusting the initial tissue parameter estimates to the MR data of new patients. The second step uses a recently developed model of dynamic contours to detect three simply closed nonintersecting curves in the plane, constituting the arachnoid/dura mater boundary of the brain, the border between the subarachnoid space and brain parenchyma, and the inner border of the parenchyma toward the lateral ventricles. The model, which is formulated by energy functions in a Bayesian framework, incorporates a priori knowledge, smoothness constraints, and updated tissue type parameters. Satisfactory maximum a posteriori probability estimates of the closed contour curves defined by the model were found using simulated annealing.

This publication has 45 references indexed in Scilit: