Abstract
The experimental conditions under which tokamak turbulence at hyperfine (electron gyroradius) scales is predicted to be significant and observable are described. The first quantitative predictions of fluctuation amplitudes, spectral features, and the associated electron energy transport are presented. A novel theoretical model which quantitatively describes the boundaries of the high-amplitude streamer transport regime is presented and shown to explain the gyrokinetic simulation results. This model uniquely includes consideration of two distinct secondary instabilities.