Abstract
The distance between the separation point and the final approach to a fully developed turbulent mixing layer is found to be of the order of a thousand times the momentum-deficit thickness of the initial boundary layer, whether the latter be laminar or turbulent. There are correspondingly large shifts in the virtual origin of the mixing layer, resulting in spurious Reynolds-number effects which cause considerable difficulties in tests of model jets or blunt-based bodies, and which are probably responsible for the disagreements over the influence of Mach number on the development of free shear layers. These effects are explained.

This publication has 2 references indexed in Scilit: