Surface area controlled heterogeneous nucleation

Abstract
Heterogeneous nucleation of liquid from a gas phase on nanoparticles has been studied under various saturation ratios and nuclei size. The probability of liquid droplet nucleation, especially at a low degree of deviation from equilibrium, was measured for both atmospheric aerosol particles and engineered nanoparticles Cr2O3. The concept of a critical saturation ratio and the validity of the one-to-one relationship between the nuclei number and the number of droplets were examined. A transient zone between no nucleation and established nucleation termed the surface area controlled nucleation was observed. In this zone, the probability of stable phase formation is determined by the surface area of nuclei. There are two distinctive features of the surface area controlled nucleation: the nucleation probability is much less than 1 and is proportional to the surface area of nuclei. For condensation particle counters (CPCs) counting nanoparticles, these features mean that counts measured are proportional to the surface area of nanoparticles and, therefore, the CPCs counts can be calibrated to measure the surface area.