Abstract
Single hydrogen atoms were imaged on the Cu(001) surface by scanning tunneling microscopy (STM). The vibrations of individual H and D atoms against the surface were excited and detected by inelastic electron tunneling spectroscopy (STM-IETS). Variable temperature measurements of H atom diffusion showed a transition from thermally activated diffusion to quantum tunneling at 60 K. Regimes of phonon-assisted and electron-limited quantum tunneling were observed. The thermal diffusion rate of D atoms varied over 7 orders of magnitude between 80 and 50 K with no transition to quantum tunneling down to a thermal hopping rate of 4×107s1.