Indistinguishable Photons from Independent Semiconductor Nanostructures

Abstract
We demonstrate quantum interference between photons generated by the radiative decay processes of excitons that are bound to isolated fluorine donor impurities in ZnSe/ZnMgSe quantum-well nanostructures. The ability to generate single photons from these devices is confirmed by autocorrelation experiments, and the indistinguishability of photons emitted from two independent nanostructures is confirmed via a Hong-Ou-Mandel dip. These results indicate that donor impurities in appropriately engineered semiconductor structures can portray atomlike homogeneity and coherence properties, potentially enabling scalable technologies for future large-scale optical quantum computers and quantum communication networks.