Abstract
For pt.I, see ibid., p.17-32 (1993). The problem of designing global output-feedback robust stabilizing controls for a class of single-input single-output minimum-phase uncertain nonlinear systems with known and constant relative degree is addressed. They are assumed to be linear with respect to the input and nonlinear with respect to an unknown constant parameter vector. The nonlinearities depend on the output only. The nonlinearities may be uncertain and are only required to be bounded by known smooth functions. The order of the robust compensator is equal to the relative degree minus one and is static when the relative degree is one. A self-tuning version of the robust control capable of achieving set point regulation is developed in which the control gains are tuned by an output-feedback adaptive algorithm. When the parameter vector enters linearly, the self-tuning regulator does not require the knowledge of parameter bounds and guarantees set point regulation for the same class of systems considered in Part I.

This publication has 19 references indexed in Scilit: