Abstract
This study presents a comprehensive investigation of fires across the Canadian boreal forest zone by means of satellite-based remote sensing. A firedetection algorithm was designed to monitor fires using daily Advanced Very High Resolution Radiometer (AVHRR) images. It exploits information from multichannel AVHRR measurements to determine the locations of fires on satellite pixels of about 1 km2 under clear sky or thin smoke cloud conditions. Daily fire maps were obtained showing most of the active fires across Canada (except those obscured by thick clouds). This was achieved by first compositing AVHRR scenes acquired over Canada on a given day and then applying the fire-detection algorithm. For the fire seasons of 1994-1998, about 800 NOAA/AVHRR daily mosaics were processed. The results provide valuable nation-wide information on fire activities in terms of their locations, burned area, starting and ending dates, as well as development. The total burned area as detected by satellite across Canada is estimated to be approximately 3.9, 4.9, 1.3, 0.4 and 2.4 million hectares in 1994, 1995, 1996, 1997 and 1998, respectively. The peak month of burning varies considerably from one year to another between June and August, as does the spatial distribution of fires. In general, conifer forests appear to be more vulnerable to burning and fires tend to grow larger than in deciduous forests.