Relationship of agr Expression and Function with Virulence and Vancomycin Treatment Outcomes in Experimental Endocarditis Due to Methicillin-Resistant Staphylococcus aureus

Abstract
The accessory gene regulator ( agr ) locus has been shown to be important for virulence in several animal models of Staphylococcus aureus infection. However, the role of agr in human infections, and specifically in antibiotic treatment, is controversial. Interestingly, agr dysfunction has been associated with reduced vancomycin responses. To systematically investigate the role of agr in virulence and treatment outcome in the context of endovascular infection, 10 well-characterized vancomycin-susceptible methicillin-resistant S. aureus (MRSA) bloodstream isolates (5 agr-I [clonal complex 45, or CC45] and 5 agr-II [CC5]) were studied for (i) agr function, (ii) RNAIII transcriptional profiles, (iii) agr locus sequences, (iv) intrinsic virulence and responses to vancomycin therapy in an experimental infective endocarditis (IE) model, and (v) in vivo RNAIII expression. Significant differences in agr function (determined by delta-hemolysin activity) correlated with the time point of RNAIII transcription (earlier RNAIII onset equals increased agr function). Unexpectedly, four MRSA strains with strong delta-hemolysin activities exhibited significant resistance to vancomycin treatment in experimental IE. In contrast, five of six MRSA strains with weak or no delta-hemolysin activity were highly susceptible to vancomycin therapy in the IE model. agr sequence analyses showed no common single-nucleotide polymorphism predictive of agr functionality. In vivo RNAIII expression in cardiac vegetations did not correlate with virulence or vancomycin treatment outcomes in the IE model. Inactivation of agr in two strains with strong delta-hemolysin activity did not affect virulence or the in vivo efficacy of vancomycin. Our findings suggest that agr dysfunction does not correlate with vancomycin treatment failures in this experimental IE model in two distinct MRSA genetic backgrounds.

This publication has 50 references indexed in Scilit: