Inactivation of Myc in Murine Two-Hit B lymphomas Causes Dormancy with Elevated Levels of Interleukin 10 Receptor and CD20: Implications for Adjuvant Therapies

Abstract
Overexpression of c-Myc and inactivation of p53 are hallmarks of human Burkitt's lymphomas. We had previously showed that transduction of murine p53-null bone marrow cells with a Myc-encoding retrovirus is sufficient for B lymphomagenesis. To address the role of Myc in tumor sustenance, we generated lymphomas induced by the Myc-estrogen receptor fusion protein (MycER). Engrafted hosts were continuously treated with the ER ligand 4-hydroxytamoxifen (4-OHT) to allow tumor formation. Subsequent inactivation of MycER via 4-OHT deprivation resulted in tumor stasis but only partial regression. At the cellular level, dormant neoplastic lymphocytes withdrew from mitosis and underwent further B-cell differentiation. Concomitantly, they up-regulated genes involved in lymphocyte proliferation and survival, most notably interleukin 10 receptor α (IL10Rα) and CD20, the target for antibody therapy with Rituxan. We found that overexpression of IL10Rα affords significant proliferative advantages and in 4-OHT–deprived animals correlates with eventual tumor relapse. Both dormant and relapsing tumors maintain IL10Rα expression suggesting that they might be sensitive to emerging drugs targeting the IL-10 pathway. Up-regulation of CD20 following Myc inactivation was also observed in immortalized human lymphocytes. Importantly, in this system, MycOFFCD20HIGH cells were more prone to Rituxan-induced apoptosis than MycONCD20MED. Thus, targeting Myc, while moderately effective on its own, shapes the phenotype of dormant neoplastic cells and sensitizes them to adjuvant molecular therapies.