Enterovirus infection can induce immune responses that cross‐react with β‐cell autoantigen tyrosine phosphatase IA‐2/IAR

Abstract
Insulin-dependent (type 1) diabetes is characterized by progressive destruction of insulin-producing β cells probably by autoreactive T lymphocytes. Viral infections, especially those caused by coxsackieviruses, are postulated to play a role in the pathogenesis of the disease in humans. One mechanism by which viral infections could initiate or accelerate diabetogenic processes is “molecular mimicry,” induction of antiviral immune responses cross-reacting with epitopes in the β-cell autoantigens. Tyrosine phosphatases (IA-2, IAR) represent a major target autoantigen in type 1 diabetes. Both humoral and cellular immune responses are directed to the carboxy-terminal (C-terminal) part of the protein. This region has a 5-amino acid sequence identity, followed by five amino acid similarity with the conservative motif in the VP1-protein of enteroviruses (PALTAVETGA/HT), which is a highly immunogenic B- and T-cell epitope in enterovirus infection-induced immune responses. This observation prompted us to investigate potential humoral cross-reactions between immune responses induced by tyrosine phosphatases and enteroviruses. The reactivities of various peptide- and virus-induced rabbit antisera clearly demonstrated that cross-reactions do exist, and in both directions. Using epitope mapping, we were able to show that several diabetes-linked epitopes in IA-2 were also recognized by CBV-4-induced antisera. Immunization of female NOD-mice with formalin-inactivated purified strain of coxsackievirus B4 (CBV-4-E2) induced an immune response that recognized the IA-2/IAR diabetogenic peptide. The results obtained with human paired sera, collected during enterovirus infection, indicated that enterovirus infection in humans may also occasionally induce a humoral response that cross-reacts with IA-2/IAR. J. Med. Virol. 66:340-350, 2002.
Funding Information
  • Maud Kuistila Memorial Foundation, Finland
  • Sigrid Juselius Foundation, Helsinki, Finland
  • Academy of Finland
  • The Juvenile Diabetes Research Foundation, USA
  • European Commission (BIOMED 2 Programme) (BMH4-CT98-3952)