Collaborative Mobile Edge Computation Offloading for IoT over Fiber-Wireless Networks

Abstract
Mobile edge computing is envisioned to be a promising paradigm to address the conflict between computationally intensive IoT applications and resource-constrained lightweight mobile devices. However, most existing research on mobile edge computation offloading has only taken the resource allocation between the mobile devices and the MEC servers into consideration, ignoring the huge computation resources in the centralized cloud computing center. To make full use of the centralized cloud and distributed MEC resources, designing a collaborative computation offloading mechanism becomes particularly important. Note that current MEC hosted networks, which mostly adopt the networking technology integrating cellular and core networks, face new challenges of single networking mode, long latency, poor reliability, high congestion, and high energy consumption. Hybrid fiber-wireless networks integrating both low-latency fiber optic and flexible wireless technologies should be a promising solution. Toward this end, we provide in this article a generic fiber-wireless architecture with coexistence of centralized cloud and distributed MEC for IoT connectivity. The problem of cloud-MEC collaborative computation offloading is defined, and a game-theoretic collaborative computation offloading scheme is proposed as our solution. Numerical results corroborate that our proposed scheme can achieve high energy efficiency and scales well as the number of mobile devices increases.