Rapid Accretion and Early Differentiation of Mars Indicated by 142 Nd/ 144 Nd in SNC Meteorites

Abstract
Small differences in the ratio of neodymium-142 to neodymium-144 in early formed mantle reservoirs in planetary bodies are the result of in situ decay of the extinct radionuclide samarium-146 and can be used to constrain early planetary differentiation and therefore the time scale of planetary accretion. The martian meteorite Nakhla (approximately 1.3 billion years old), the type sample of the nakhlite subgroup of the Shergottite-Nakhlite-Chassigny (SNC) meteorites, exhibits a 59 +/- 13 parts per million excess in the ratio of neodymium-142 to neodymium-144 relative to normal neodymium. This anomaly records differentiation in the martian mantle before 4539 million years ago and implies that Mars experienced no giant impacts at any time later than 27 million years after the origin of the solar system.