Surface-Enhanced Raman Detection of 2,4-Dinitrotoluene Impurity Vapor as a Marker To Locate Landmines

Abstract
Time, cost, and casualties associated with demining efforts underscore the need for improved detection techniques. Reduction in the number of false positives by directly detecting the explosive material, rather than casing material, is desirable. The desired field sensor must, at a minimum, demonstrate reproducibility, the necessary level of sensitivity, portability, instrumental stability, and fast system response times. Ideally, vibrational spectroscopic techniques have the potential to remove false positives, since every chemical has a unique bond structure. Herein, we demonstrate the capabilities of surface-enhanced Raman spectroscopy to detect the chemical vapor signature emanating from buried TNT-based landmines. We present reproducible results obtained from blind tests controlled by the Defense Advanced Research Projects Agency (DARPA) that demonstrate vapor detection of 2,4-dinitrotoluene at concentration levels of 5 ppb or less. The results presented used acquisition times of 30 s on a fieldable system and showed that SERS can be a significant improvement over current landmine detection methods.

This publication has 10 references indexed in Scilit: