Electron Tomography of the Contact between T Cells and SIV/HIV-1: Implications for Viral Entry

Abstract
The envelope glycoproteins of primate lentiviruses, including human and simian immunodeficiency viruses (HIV and SIV), are heterodimers of a transmembrane glycoprotein (usually gp41), and a surface glycoprotein (gp120), which binds CD4 on target cells to initiate viral entry. We have used electron tomography to determine the three-dimensional architectures of purified SIV virions in isolation and in contact with CD4+ target cells. The trimeric viral envelope glycoprotein surface spikes are heterogeneous in appearance and typically ∼120 Å long and ∼120 Å wide at the distal end. Docking of SIV or HIV-1 on the T cell surface occurs via a neck-shaped contact region that is ∼400 Å wide and consistently consists of a closely spaced cluster of five to seven rod-shaped features, each ∼100 Å long and ∼100 Å wide. This distinctive structure is not observed when viruses are incubated with T lymphocytes in the presence of anti-CD4 antibodies, the CCR5 antagonist TAK779, or the peptide entry inhibitor SIVmac251 C34. For virions bound to cells, few trimers were observed away from this cluster at the virion–cell interface, even in cases where virus preparations showing as many as 70 envelope glycoprotein trimers per virus particle were used. This contact zone, which we term the “entry claw”, provides a spatial context to understand the molecular mechanisms of viral entry. Determination of the molecular composition and structure of the entry claw may facilitate the identification of improved drugs for the inhibition of HIV-1 entry. Retroviruses such as simian immunodeficiency virus and HIV-1 enter target cells by exploiting the interaction between their surface glycoproteins and cell surface receptors. Knowledge of the structures of these glycoproteins and of the molecular details of their interaction with cell surface receptors is of fundamental interest in understanding viral entry mechanisms. Electron tomo-graphy is a powerful approach to determining the three-dimensional structures of large and heterogeneous sub-cellular assemblies such as virus–cell contact regions that cannot easily be analyzed by high-resolution structural methods such as X-ray crystallography. Here, we have used electron tomographic approaches to show that SIV and HIV-1 viruses make contact with T cells via a unique structure that we term the viral “entry claw”, which is typically composed of about six clustered rods of density that span the contact region. Investigation of the structure of the entry claw and the factors that promote its formation could lead to new insights into the design of more effective drugs to inhibit HIV entry.