Experimental and numerical investigation of inertial particle clustering in isotropic turbulence

Abstract
This paper presents the first detailed comparisons between experiments and direct numerical simulations (DNS) of inertial particle clustering in nearly isotropic ‘box turbulence’. The experimental system consists of a box 38cm in each dimension with fans in the eight corners that sustain nearly isotropic turbulence in the centre of the box. We inject hollow glass spheres with a mean diameter of 6 μm and measure the locations of several hundred particles in a 1 cm3volume in the centre of the box using three-dimensional digital holographic particle imaging. We observe particle concentration fluctuations that result from inertial clustering (sometimes called ‘preferential concentration’). The radial distribution function (RDF), a statistical measure of clustering, has been calculated from the particle position field. We select this measure because of its relevance to the collision kernel for particles. DNS of the equivalent system, with nearly perfect parameter overlap, have also been performed. We observe good agreement between the RDF predictions of the DNS and the experimental observations, despite some challenges in the interpretation of the experiments. The results provide important guidance on ways to improve the measurement.