Intermolecular potential of the methane dimer and trimer

Abstract
The Heitler–London (HL) exchange energy is responsible for the anisotropy of the pair potential in methane. The equilibrium dimer structure is that which minimizes steric repulsion between hydrogens belonging to opposite subsystems. Dispersion energy, which represents a dominating attractive contribution, displays an orientation dependence which is the mirror image of that for HL exchange. The three‐body correction to the pair potential is a superposition of HL and second‐order exchange nonadditivities combined with the Axilrod–Teller dispersion nonadditivity. A great deal of cancellation between these terms results in near additivity of methane interactions in the long and intermediate regions.

This publication has 38 references indexed in Scilit: