Mechanical force-induced signal transduction in lung cells

Abstract
The lung is a unique organ in that it is exposed to physical forces derived from breathing, blood flow, and surface tension throughout life. Over the past decade, significant progress has been made at the cellular and molecular levels regarding the mechanisms by which physical forces affect lung morphogenesis, function, and metabolism. With the use of newly developed devices, mechanical forces have been applied to a variety of lung cells including fetal lung cells, adult alveolar epithelial cells, fibroblasts, airway epithelial and smooth muscle cells, pulmonary endothelial and smooth muscle cells, and mesothelial cells. These studies have led to new insights into how cells sense mechanical stimulation, transmit signals intra- and intercellularly, and regulate gene expression at the transcriptional and posttranscriptional levels. These advances have significantly increased our understanding of the process of mechanotransduction in lung cells. Further investigation in this exciting research field will facilitate our understanding of pulmonary physiology and pathophysiology at the cellular and molecular levels.