Profiling protein thiol oxidation in tumor cells using sulfenic acid-specific antibodies

Abstract
Hydrogen peroxide (H2O2) functions as a second messenger that can activate cell proliferation through chemoselective oxidation of cysteine residues in signaling proteins. The connection between H2O2 signaling, thiol oxidation, and activation of growth pathways has emerged as fertile ground for the development of strategies for cancer treatment. Central to achieving this goal is the development of tools and assays that facilitate characterization of the molecular events associated with tumorigenesis and evaluation of patient response to therapy. Here we report on the development of an immunochemical method for detecting sulfenic acid, the initial oxidation product that results when a thiolate reacts with H2O2. For this approach, the sulfenic acid is derivatized with a chemical tag to generate a unique epitope for recognition. The elicited antibody is exquisitely specific, context-independent, and capable of visualizing sulfenic acid formation in cells. Applying this approach to several systems, including cancer cell lines, shows it can be used to monitor differences in thiol redox status and reveals a diverse pattern of sulfenic acid modifications across different subtypes of breast tumors. These studies demonstrate a general strategy for producing antibodies against a specific oxidation state of cysteine and show the utility of these reagents for profiling thiol oxidation associated with pathological conditions such as breast cancer.