Mechanisms of spatial self-organization in isothermal kinetic oscillations during the catalytic CO oxidation on Pt single crystal surfaces

Abstract
The rate of catalytic CO oxidation on Pt(100) and (110) surfaces at low pressures (≤10−4 Torr) and under isothermal conditions may exhibit sustained temporal oscillations which are coupled with periodic transformations of the surface structures between reconstructed and nonreconstructed phases, the latter exhibiting higher oxygen sticking coefficients and hence higher reactivity. With Pt(100) the two surface phases exhibit a much larger difference in reactivity (=oxygen sticking coefficient) than with Pt(110), which effect accounts for the qualitative differences in the oscillatory behavior: if two of the control parameters (say pO2, T) are kept fixed, the third (pCO) may be varied with Pt(100) over a fairly wide range without leaving the oscillatory region. Minor (<1%) fluctuations of the partial pressures associated with the varying reaction rate are hence without any noticeable effect. Coupling between surface reaction and diffusion causes wave propagation of the surface phase transformations and therefore spatial self-organization, as demonstrated by scanning LEED experiments. With Pt(110), on the other hand, the oscillatory region is very narrow. In this case mass transport through the gas phase as caused by the small pressure variations associated with the reaction lead to synchronization between different parts of the surface. Computer simulations with the cellular automaton technique confirm qualitatively the experimental findings and support the conclusions reached.