Abstract
Solutions of the Dirac wave equation representing a free electron moving in a uniform magnetic field are obtained. The functions are similar to those obtained by Landau and by Uhlenbeck and Young as solutions of the Schrödinger equation. A wave packet is constructed representing a beam of electrons passing through a slit. The results agree with the classical predictions to terms of the order of the de Broglie wave-length of the electron divided by the radius of curvature of its classical path. For experimental cases this ratio is of the order 108 to 1010. Hence it is concluded that the difference between magnetic deflection measurements of em and other determinations cannot be explained as a quantum effect.