Deformation of carbon nanotubes by surface van der Waals forces

Abstract
The strength and effect of surface van der Waals forces on the shape of multiwalled and single-walled carbon nanotubes is investigated using atomic-force microscopy, continuum mechanics, and molecular-mechanics simulations. Our calculations show that depending on the tube diameter and number of shells, the van der Waals interaction between nanotubes and a substrate results in high binding energies, which has also been determined experimentally. Nanotubes on a substrate may consequently experience radial and axial deformations, which significantly modify the idealized geometry of free nanotubes. These findings have implications for electronic transport and the tribological properties of adsorbed nanotubes.