Abstract
A vector quantizer is a system for mapping a sequence of continuous or discrete vectors into a digital sequence suitable for communication over or storage in a digital channel. The goal of such a system is data compression: to reduce the bit rate so as to minimize communication channel capacity or digital storage memory requirements while maintaining the necessary fidelity of the data. The mapping for each vector may or may not have memory in the sense of depending on past actions of the coder, just as in well established scalar techniques such as PCM, which has no memory, and predictive quantization, which does. Even though information theory implies that one can always obtain better performance by coding vectors instead of scalars, scalar quantizers have remained by far the most common data compression system because of their simplicity and good performance when the communication rate is sufficiently large. In addition, relatively few design techniques have existed for vector quantizers. During the past few years several design algorithms have been developed for a variety of vector quantizers and the performance of these codes has been studied for speech waveforms, speech linear predictive parameter vectors, images, and several simulated random processes. It is the purpose of this article to survey some of these design techniques and their applications.

This publication has 43 references indexed in Scilit: