Wettability of denture relining materials under water storage over time

Abstract
Poor wettability of denture relining materials may lead to retention problems and patient discomfort. Purpose of this study is to compare and evaluate wettability of nine denture relining materials using contact angle measurements under air and water storage over time. Nine denture relining materials were investigated in this study. Two heat-curing polymethyl-methacrylate (PMMA) denture base materials: Vertex RS, Lang, one self-curing polyethyl-methacrylate (PEMA) chairside reline resin: Rebase II, six silicone relining materials: Mucopren soft, Mucosoft, Mollosil® plus, Sofreliner Touch, GC Reline™ Ultrasoft, Silagum automix comfort were used in this experiment. Contact angles were measured using high-resolution drop shape analysis system (DSA 10-MK2, KRUESS, Germany) under three conditions (in air after setting, 1 hour water storage, and 24 hours water storage). Nine materials were classified into three groups according to material composition (Group 1: PMMA, Group 2: PEMA, Group 3: Silicone). Mean values of contact angles were compared using independent samples t-test and one-way ANOVA, followed by a Scheffe's post hoc analysis (α= 0.01). Contact angles of materials tested after air and water storage increased in the following order: Group 1 (PMMA), Group 2 (PEMA), Group 3 (Silicone). Heat-cured acrylic denture base resins had more wettability than silicone relining materials. Lang had the highest wettability after 24 hours of water storage. Silicone relining materials had lower wettability due to their hydrophobicity. Wettability of all denture relining materials, except Rebase II and Mollosil® plus, increased after 24 hours of water storage. Conventional heat-cured resin showed the highest wettability, therefore, it can be suggested that heat-cured acrylic resin is material of choice for denture relining materials.