Retinal ganglion cells projecting to the accessory optic system in the rat

Abstract
The present data identify the distribution and morphological features of a homogeneous group of rat retinal ganglion cells. These cells were labelled after injection of either horseradish peroxidase or a fluorescent tracer, Fast Blue, into the medial terminal nucleus (MTN) of the accessory optic system. After retrograde fluorescent labelling, MTN-projecting retinal ganglion cells were intracellularly injected with Lucifer Yellow to reveal their complete dendritic morphology. There were on average 1,750 MTN-projecting cells fairly evenly distributed over the entire retinal ganglion cell layer. Their density ranged from 40–49 cells/mm2 in superior retina to 10–19 cells/mm2 towards the peripheral regions of both inferior and superior retina. The area of highest density formed a nasal-temporal band suggestive of a visual streak. Soma diameters ranged from 8.7 to 14.5 μm centrally and from 9.9 to 17.1 μm peripherally. Maximal dendritic field diameter ranged from 431 to 644 μm and averaged 516 μm with no obvious eccentricity dependence. The majority of MTN-projecting cells were bistratified. Dendrites stratified predominantly in the inner sublamina of the inner plexiform layer (IPL) with a varying number of branches from the remaining dendrites contained within the outer IPL, both strata presumably corresponding to the electrophysiologically determined on-off dichotomy. Cells projecting to the MTN were characterised by higher-order dendritic branching patterns that resulted in a dense dendritic tree with minor dendritic overlap. The slender dendrites had a beaded appearance and displayed spiny protrusions. The dendritic coverage of 5–6, stratification pattern, and overall morphological appearance of rat MTN-projecting cells renders them suitable candidates for on-direction-selective cells shown electrophysiologically to be linked with the MTN of the accessory optic system.