Classical and Quantum Hamiltonian Ratchets

Abstract
We explain the mechanism leading to directed chaotic transport in Hamiltonian systems with spatial and temporal periodicity. We show that a mixed phase space comprising both regular and chaotic motion is required and we derive a classical sum rule which allows one to predict the chaotic transport velocity from properties of regular phase-space components. Transport in quantum Hamiltonian ratchets arises by the same mechanism as long as uncertainty allows one to resolve the classical phase-space structure. We derive a quantum sum rule analogous to the classical one, based on the relation between quantum transport and band structure.

This publication has 14 references indexed in Scilit: