Abstract
An energy-based model of feeding territoriality is described. The model predicts an optimal territory size where the territory holder's net energy intake is maximized, on a daily or seasonal time scale. Simulated effects on optimal territory size of animal size, food availability, and competitor density are in general agreement with observed relationships in a wide variety of animals. When salmonid data are used to estimate the model parameter values, predicted territory sizes are similar to those actually observed. When emigration is allowed, the model predicts that territoriality, through individual selection alone, can regulate population size, but that this regulation breaks down when initial densities exceed some threshold value. Sensitivity analysis shows optimal territory size to be most affected by those parameters influencing food intake and energy expenditure. Some alternative criteria for optimization are also discussed. An animal maximizing net foraging efficiency has a smaller territory than one maximizing net energy, but the effects of animal size, food availability, and competitor density on territory size are the same in either case.