Abstract
Two-dimensional vortex shedding behind an inclined flat plate in uniform shear flow is numerically investigated by means of an inviscid discrete-vortex approximation. The points of appearance of the vortices are fixed in the plane of the plate at a short distance downstream of the edges of the plate. The strengths of the vortices are determined from the Kutta condition. On the assumption that the steadily periodic flow patterns are independent of initial conditions, the numerical calculations are performed for an inclined flat plate immersed in an incompressible fluid which is set in motion impulsively from rest with the velocity profile of uniform shear flow. The results of analysis show that the Strouhal number of vortex shedding and the time-averaged values of other hydrodynamic characteristics of the flow such as the outer-edge velocity of the separated shear layers, the convective velocity of the shear layers and the drag force exerted on the plate vary closely linearly with the shear parameter of the approaching shear flow. A linear relation between the Strouhal number and the shear parameter is confirmed by an air-tunnel experiment. The effects of the shear parameter on the calculated vortex patterns in the wake are also presented.