Abstract
Vect (N), the algebra of vector fields in N dimensions, is studied. Some aspects of local differential geometry are formulated as Vect(N) representation theory. There is a new class of modules, conformal fields, whose restrictions to the subalgebra sl(N+1)⊂ Vect (N) are finite-dimensional sl (N+1) representations. In this regard they are simpler than tensor fields. Fock modules are also constructed. Infinities, which are unremovable even by normal ordering, arise unless bosonic and fermionic degrees of freedom match.