Bio‐Chemimechanical Pulps fromEucalyptus grandis: Strength Properties, Bleaching, and Brightness Stability

Abstract
Eucalyptus grandis wood chips were treated with the white‐rot fungus Ceriporiopsis subvermispora in a 100‐L bioreactor for 15 days. The treatment was characteristic of a selective biodelignification (7.6±0.2% and 0.3±0.2% of lignin and glucan losses, respectively) with concomitant extractive removal (17.7±0.2%). Biotreated samples and non‐inoculated controls were pre‐cooked in alkaline sulfite and post‐refined in a Jokro mill. The biotreated pulps fibrillated more rapidly and contained lower amounts of rejects than the control. To achieve a freeness of 400 mL, the control pulp required 125 min of beating, whereas the biopulp required only 95 min, a reduction of 24%. Unbleached biopulps had better strength properties than control pulps because higher tensile indexes were obtained for the entire range of tear indexes. Bleaching with 8% hydrogen peroxide increased the brightness of these pulps by 17 points. At low peroxide loads, the brightness increase for biopulps was lower than for the control pulps. Still, the bleachability of sboth pulps was similar for peroxide loads higher than 2%. After a two‐stage H2O2‐bleaching sequence, final brightnesses for the control and biopulps were 59.7±0.8% and 60.5±0.4%, respectively. Brightness stability of the bleached control and bio‐CMP pulps to photo and thermal aging were very similar.