An Organic Molecule with Asymmetric Structure Exhibiting Aggregation‐Induced Emission, Delayed Fluorescence, and Mechanoluminescence

Abstract
Compounds displaying delayed fluorescence (DF), from severe concentration quenching, have limited applications as nondoped organic light-emitting diodes and material sciences. As a nondoped fluorescent emitter, aggregation-induced emission (AIE) materials show high emission efficiency in their aggregated states. Reported herein is an AIE-active, DF compound in which the molecular interaction is modulated, thereby promoting triplet harvesting in the solid state with a high photoluminescence quantum yield of 93.3 %, which is the highest quantum yield, to the best of our knowledge, for long-lifetime emitters. Simultaneously, the compound with asymmetric molecular structure exhibited strong mechanoluminescence (ML) without pretreatment in the solid state, thus exploiting a design and synthetic strategy to integrate the features of DF, AIE, and ML into one compound.