Effects of 3.beta.-[2-(diethylamino)ethoxy]androst-5-en-17-one on the synthesis of cholesterol and ubiquinone in rat intestinal epithelial cell cultures

Abstract
The relationship between cholesterol and ubiquinone synthesis in rat intestinal epithelial cell cultures was examined by using 3 beta-[2-(diethylamino)ethoxy]androst-5-en-17-one hydrochloride (U18666A). Addition of U18666A to cells caused a greater than 90% inhibition of incorporation of [3H]acetate into cholesterol and an apparent large increase in the incorporation of [3H]acetate and [3H]mevalonate into ubiquinone. However, the incorporation of 4-hydroxy[U-14C]benzoate, a ring precursor of ubiquinone, was unchanged. The apparent increase of 3H incorporation into ubiquinone was found to be due to the formation of a contaminant that has been identified as squalene 2,3:22,23-dioxide. Following incubation of cells with U18666A, its removal from the medium resulted in a decrease in squalene 2,3:22,23-dioxide labeling and a corresponding increase in the polar sterol fraction. These results demonstrate that U18666A inhibits the reaction catalyzed by 2,3-oxidosqualene cyclase (EC 5.4.99.7). As a result, the isoprenoid precursors are diverted not to ubiquinone as has been suggested but to squalene 2,3:22,23-dioxide, a metabolite not on the cholesterol biosynthetic pathway. Removal of the drug allows cyclization of squalene 2,3:22,23-dioxide, leading to formation of compounds with chromatographic properties of polar sterols.