Abstract
Iron and ascorbic acid appear to be the normal catalytic components responsible for the lipid peroxidation reaction in aerobically incubated rat tissue homogenates. The amounts of each present in the catalytically-active fractions of rat liver, brain, testis, and kidney are appropriate to explain the lipid peroxidation reaction measured. Utilization of ascorbic acid as part of the normal catalytic mechanism is indicated by the following: The catalytic activity of the tissue soluble phase occurs only in the small molecule fraction eluted from Sephadex, and ascorbic acid occurs only in this fraction; the extent of catalysis by the small molecule fractions of the soluble phases from several tissues is proportional to their ascorbic acid content; and pH effect on lipid peroxidation is the same for both soluble-phase and ascorbic acid catalysis. Utilization of iron as part of the normal catalytic mechanism is indicated by EDTA inhibition studies and by measurements of pH effects. Previous studies have demonstrated the lack of catalytic activity by cations other than iron for the lipid peroxidation reaction in homogenates. Lipid peroxidation is inhibited at high tissue concentration and the inhibition is due to components occurring in the large molecule fraction of the soluble phase.