Hypertonic stress increases claudin-4 expression and tight junction integrity in association with MUPP1 in IMCD3 cells

Abstract
We reported that the multiple PDZ protein 1 (MUPP1) is an osmotic response protein in kidney cells. This up-regulation was found to be necessary for the maintenance of tight epithelial properties in these cells. We investigated whether an interaction with one or more members of the claudin family is responsible for this observation. In response to hypertonicity, the up-regulation of claudin-4 (Cldn4) expression, and not other claudins, was initially identified in inner medullary collecting duct (IMCD3) cells by gene array and further verified by quantitative PCR and Western blotting. In kidney tissues, Cldn4 expression was substantial in the papilla and absent in the cortex. Furthermore, Cldn4 expression significantly increased in the papilla of mice after 36 h of thirsting. Cldn4 immunofluorescence in hypertonically stressed cells revealed colocalization with MUPP1 at the tight junctions. Interaction between Cldn4 and MUPP1 was also demonstrated by coimmunoprecipitation of both proteins from IMCD3 cells chronically adapted to hypertonicity. In IMCD3 cells stably silenced for MUPP1 expression under hypertonic conditions, a significant decrement in Cldn4 expression was observed that was restored after inhibition of lysosome activity. Immunofluorescence detection identified that in these MUPP1-silenced cells Cldn4 was mistargeted to the lysosomes. Functionally, silencing Cldn4 expression in IMCD3 cells resulted in a decrease in the transepithelial resistance to the same degree as observed when MUPP1 expression was silenced, suggesting that MUPP1 contributes to the maintenance of a tight epithelium in the medulla of the kidney under hypertonic stress by correctly localizing Cldn4 to the tight junctions.

This publication has 34 references indexed in Scilit: