Effect of rapid thermal annealing on strain in ultrathin strained silicon on insulator layers

Abstract
The fabrication of ultrathin strained silicon directly on insulator is demonstrated and the thermal stability of these films is investigated. Ultrathin (∼13 nm) strained silicon on insulator layers were fabricated by epitaxial growth of strained silicon on relaxed SiGe, wafer bonding, and an etch-back technique employing two etch-stop layers for improved across wafer thickness uniformity. Using 325 nm Raman spectroscopy, no strain relaxation is observed following rapid thermal annealing of these layers to temperatures as high as 950 °C. The thermal stability of these films is promising for the future fabrication of enhanced performance strained Si ultrathin body and double-gate metal-oxide-semiconductor field-effect transistors.