Abstract
The use of a Navier–Stokes analysis to predict the change in turbine efficiency resulting from changes in blade surface roughness or incidence flow angles is discussed. The results of a midspan Navier–Stokes analysis are combined with those from a quasi-three-dimensional flow analysis code to predict turbine performance. A quasi-three-dimensional flow analysis code was used to determine turbine performance over a range of incidence flow angles. This analysis was done for a number of incidence loss models. The change in loss due to changes in incidence flow computed from the Navier–Stokes analysis is compared with the results obtained using the empirical loss models. The Navier–Stokes analysis was also used to determine the effects of surface roughness using a mixing length turbulence model, which incorporated the roughness height. The validity of the approach used was verified by comparisons with experimental data for a turbine with both smooth and rough blades tested over a wide range of blade incidence flow angles.